
Stochastic resonance in a mono-stable system with multiplicative and additive noise

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 13861

(http://iopscience.iop.org/0305-4470/39/45/002)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/45
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 13861–13868 doi:10.1088/0305-4470/39/45/002

Stochastic resonance in a mono-stable system with
multiplicative and additive noise

Feng Guo1, Yu-Rong Zhou2,3, Shi-Qi Jiang1,4 and Tian-Xiang Gu1

1 School of Automation Engineering of University of Electronic Science and Technology of
China, Chengdu 610054, People’s Republic of China
2 School of Life Science and Technology of University of Electronic Science and Technology of
China, Chengdu 610054, People’s Republic of China
3 School of Information and Electric Engineering of Panzhihua University, Panzhihua 617000,
People’s Republic of China
4 China Gas Turbine Establishment, Jiangyou 621703, People’s Republic of China

E-mail: guofen9932@163.com

Received 27 February 2006, in final form 10 September 2006
Published 24 October 2006
Online at stacks.iop.org/JPhysA/39/13861

Abstract
The stochastic resonance in a biased mono-stable system subject to
multiplicative and additive noise is investigated. Based on the adiabatic
approximation theory, the analytic expression of the signal-to-noise ratio (SNR)
is obtained. It is shown that the SNR is a non-monotonic function of the
intensities of the multiplicative and additive noise, as well as the parameters of
the mono-stable system.

PACS number: 05.40.−a

1. Introduction

The stochastic resonance (SR) phenomenon has been a subject of considerable study in the last
two decades [1–29]. SR began with the study of climatic dynamics. In 1981, Benzi and co-
workers [1] invoked this phenomenon to explain the Earth’s climatic change: the eccentricity
of the Earth’s orbit varies periodically in time, and if the amplitude of this variation is too small
to explain the succession of ice ages and relatively warm periods, the periodical phenomenon
is amplified by some perturbations. This cooperative effect between the coherent ‘signal’ and
the ‘noise’ was called stochastic resonance (SR).

SR has been investigated experimentally and theoretically. McNamara et al [2, 3] observed
the SR by a bidirectional ring laser and obtained the expression of the signal-to-noise (SNR)
in the adiabatic limit. Dykman et al [4] and Hu et al [5] introduced the linear-response theory
and perturbation theory to investigate the SR. Zhou and Moss [6] employed the residence-
time distribution to explain the SR as a resonance synchronization phenomenon. The SR is
considered as a cooperative result of periodic signal and noise in a nonlinear system. Later,
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Berdichevsky and Gitterman [7, 8] explored the existence of the SR in a linear system driven
by a coloured multiplicative noise or a dichotomous noise. These results have led to an
extensive application of the SR in many scientific fields, such as electronic systems [9–11],
lasers systems [2], threshold systems [12, 13] and biological systems [14, 15], etc. Several
quantifiers have been used to characterize SR in noisy, continuous systems. The average output
amplitude, or the spectral amplification (SPA), has been studied in [16, 17] and the phase of the
output average in [18–20], respectively. Those parameters as well as the signal-to-noise ratio
(SNR) [3] exhibit a non-monotonic behaviour with the noise strength which is a representative
of SR. The conventional SR is a nonlinear effect that accounts for the optimum response of
a dynamical system to an external force at certain noise intensity. The SR in a broad sense
means the non-monotonic behaviour of the output signal as a function of some characteristics
of the noise (noise intensity or noise correlation time) or of a periodic force (amplitude or
frequency).

In actual systems there are a lot of mono-stable systems [21–29], including chemical,
electronic, physical and biological systems. Dykman et al [21] and Evstigneev et al
investigated the SR in a mono-stable over-damped system [23] based on linear response
theory. Stocks et al investigated the zero-dispersion stochastic resonance (ZDSR) in a mono-
stable system [28, 29], for which the dependence of eigenfrequency upon energy has an
extremum. They analysed the SR phenomenon on the basis of linear response theory and
the fluctuation dissipation theorem and found that the response to a weak periodic force on
frequency is strongly resonant. It is well known that the multiplicative noise often plays a
different role on the output of a system, with respect to the additive noise. Therefore, the
investigation of the response of a mono-stable system driven by the multiplicative noise is of
great significance. In this paper, based on the adiabatic approximation theory, we study the SR
in a mono-stable system driven by the multiplicative and additive white noise and a periodic
force with a constant component. The increase in the constant component leads to a static
asymmetry of the mono-stable potential.

2. The mono-stable system and its signal-to-noise ratio

Consider an over-damped mono-stable system [22] with multiplicative and additive noise
described by the following Langevin equation:

dx

dt
= −ax3 + b + xξ(t) + η(t) + A cos(�t), (1)

where a > 0, b is a constant, denoting the bias of the mono-stable system. The noise terms
ξ(t) and η(t) are the uncorrelated noise characterized by their mean and variance

〈ξ(t)〉 = 〈η(t)〉 = 0, (2)

〈ξ(t)ξ(s)〉 = 2Dδ(t − s), 〈η(t)η(s)〉 = 2Pδ(t − s). (3)

Here D and P are the intensities of the multiplicative and additive noise, respectively.
According to equations (1)–(3), the corresponding Fokker–Plank equation of the mono-

stable system, equation (1), can be written as

∂ρ(x, t)

∂t
= − ∂

∂x
[F(x, t)ρ(x, t)] +

∂2

∂x2
[G(x)ρ(x, t)], (4)

where

F(x, t) = Dx − ax3 + b + A cos(�t), G(x) = Dx2 + P. (5)
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We assume that the external force frequency � is so small that there is enough time for the
system to reach the local equilibrium during the period of 1/�, i.e., we make the assumption
that the system satisfies the adiabatic approximation condition [3]. The quasi-stationary
distribution function can be derived from equations (4), (5) in the adiabatic limit, i.e.,

ρst(x) = Cst√
G(x)

exp

[
−V (x)

D

]
, (6)

where Cst is the normalization constant, V (x) is the rectified potential function and has the
form

V (x) =
∫ x

−∞

D

G(x)
[−U ′(x) + b + A cos(�t)] dx, (7)

with

U ′(x) = dU

dx
= ax3 − Dx. (8)

From equations (7), (8), one can see that, for the case of D �= 0, i.e., in the presence of the
multiplicative noise, the mono-stable system (1) can thus be regarded as an equivalent bistable
system, with xu = 0 and x± = ±√

D/a being the unstable and stable states of the equivalent
bistable system. Under the adiabatic limit condition, the transition rates out of x± can be
obtained by

N±(t) =
√|U ′′(xu)U ′′(x±)|

2π
exp

[
V (x±) − V (xu)

D

]

= N±0 exp[∓kA cos(�t)], (9)

where N±0 denotes the characteristic switching frequency of the equivalent bistable system
when it is only driven by the multiplicative and additive noise, which is given by

N±0 = D√
2π

exp

[
∓kb − �	

2D

]
, (10)

with

k = 1√
DP

arctan

(
D√
aP

)
, �	 = D

[(
1 +

a

P

)
ln

(
D2 + aP

aP

)
− 1

]
. (11)

The occupation probabilities n± of the equivalent bistable system satisfies the following master
equation: [

dn+/dt

dn−/dt

]
=

[−N+(t) N−(t)

N+(t) −N−(t)

] [
n+

n−

]
. (12)

Based on the adiabatic elimination theory [3], one can expand equation (9) in series with the
small parameter µ = [kA cos(�t)], and then combining with equation (12), the expressions
of n± can be obtained. The averaged autocorrelation function is given by

〈x(t)x(t + τ0)〉avg

= �

2π

∫ 2π/�

0
lim

t0→−∞
[
x2

+n+(t + τ0|x+, t)n+(t |x0, t0) + x+x−n+(t + τ0|x−, t)n−(t |x0, t0)

+ x+x−n−(t + τ0|x+, t)n+(t |x0, t0) + x2
−n−(t + τ0|x−, t)n−(t |x0, t0)

]
dt. (13)

By performing the Fourier transform of the autocorrelation function, one can get the expression
of the power spectrum defined for the positive frequency �, i.e.,

S(ω) = S1(�)δ(ω − �) + S2(ω,�), (14)
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Figure 1. SNR as a function of the system parameter a for b = 0.3,D = 0.75, P = 0.2,� = 0.01
with different values of amplitude A.

Figure 2. The potential function V (x) for P = 0.1, A = b = 0, D = 0.8 with different values of
parameter a.

where

S1(�) = 4πDν2

a(β2 + �2)
, S2(ω,�) = 4Dβ

a(β2 + ω2)

(
1

cosh2(kb)
− 2ν2

β2 + �2

)
, (15)

with

ν = DAk√
2π cosh(kb)

exp

(
−�	

2D

)
, β =

√
2D cosh(kb)

π
exp

(
−�	

2D

)
, (16)

and k and �	 have been defined earlier.
Here S1(�) is the power density connected with the output signal, S2(ω) is the power

spectrum associated with the noise background. The signal-to-noise ratio SNR is defined as
the ratio between the power density of the signal and the noise background at the frequency
ω = �,

SNR = S1(�)

S2(ω = �,�)
, (17)

where S1(�) and S2(ω,�) have been defined earlier.
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Figure 3. SNR as a function of the multiplicative noise intensity D for P = 0.1, b = 0.7,

� = 0.01, A = 0.01 with different values of parameter a.

Figure 4. The potential function V (x) for P = 0.2, A = b = 0, a = 0.1 with different values of
multiplicative noise intensity D.

3. Discussion and conclusion

Up to now, we have obtained the expression of the signal-to-noise ratio. Now let us discuss the
influence of the noise and the system parameters on the signal-to-noise ratio and draw some
conclusions.

By virtue of equation (17), the effects of the noise intensity, the system bias b as well as
the parameter a on the SNR are discussed through figures 1–8. We analyse these figures by
means of the analysis of the system potential.

In figure 1, we analyse the influence of the system parameter a on the SNR. As shown
in figure 1, the SNR increases initially as a increases, and then reaches a maximum for some
intermediate a. Hence the stochastic resonance in a broad sense takes place. At the same time
the SNR increases monotonically with the increase in the amplitude A.

In figure 2, we plot the potential function V (x) for different values of system parameter
a and fixed values of the other parameters. As seen in figure 2, the height �V of the potential
barrier and the distance �x between the two minima of the potential function decrease with
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Figure 5. SNR as a function of the system bias b for a = 2, D = 0.8, P = 0.5,� = 0.01 with
different values of amplitude A.

Figure 6. The potential function V (x) for P = 0.5, D = 0.8, a = 0.1, A = 0 with different
values of bias b.

the increase of the system parameter a. For a very small value of parameter a, the particle
moving in the equivalent bistable system can hardly jump over the potential carrier since
the height �V of the potential is too high. So the particle moves around one of the two
potential wells, the output signal is very small, and the SNR is very low. When the parameter
a increases, the decrease of �V makes the particle easy to jump between the two wells, the
output signal can thus be improved, and the SNR increases. On the other hand, for a large
value of parameter a, �V is relatively low and the distance �x becomes relatively short,
which makes the system turn to be a mono-stable one, the output amplitude thus decreases,
and the output noise increases. Therefore, there exists some value of parameter a for which
the SNR reaches its maximum value. In other words, the SNR is a non-monotonic function of
parameter a.

A multiplicative noise can play a crucial role on the system response. We introduce a
multiplicative noise in this paper, and find a non-monotonic behaviour of SNR as a function of
the multiplicative noise intensity, which is not mentioned in [21–29]. In figure 3, we show the
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Figure 7. SNR as a function of the additive noise intensity P for a = 1,D = 0.15, � = 0.01,

A = 0.005 with different values of bias b.

Figure 8. The potential function V (x) for D = 0.4, a = 0.1, A = b = 0 with different values of
additive noise intensity P

dependence of the SNR on the multiplicative noise intensity D for different values of system
parameter a. As seen in figure 3, the SNR is a non-monotonic function of the multiplicative
noise intensity, a maximum exists on the curve of the SNR, i.e., the conventional stochastic
resonance occurs. Moreover, the SNR is a non-monotonic function of parameter a, which is
consistent with the effect shown in figure 1. As shown in figure 3, the maximum value of SNR
for a = 5 is higher than those for both a = 0.2 and a = 10.

As shown in figure 4, the height �V of the potential barrier and the distance �x between
the two minima of the potential function decrease with the decrease of the multiplicative noise
intensity D, which means that the decrease of the noise strength D has the same effect on
the potential height �V and the distance �x as the increase of the parameter a. In fact, for
small intensity D(D < 0.03), the particle moves almost in a mono-stable system driven by
the additive noise (thermal noise); for large strength D(D > 0.13), the barrier height �V

turns to be relatively high for the particle to jump over. For both the two cases the output
signal becomes very small and the SNR is very low. Therefore, there exists an appropriate
multiplicative noise intensity D for which the SNR reaches its maximum value. That is why
we see the phenomenon in figure 3.
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The system parameter b can also be considered as the asymmetry of the mono-stable
potential. We investigate the effect of the asymmetry of the mono-stable system in figure 5.
As shown in the figure, the SNR also behaves non-monotonically as the system bias b varies.

We explain figure 5 as follows. As seen in figure 6, the potential barrier �V and the
distance �x varies with the increase of the system bias b. One can see that only for b = 0,
the potential is a symmetric one, while for b �= 0, the potential is an asymmetric one. For
fixed values of the other parameters, the barrier height �V and the distance �x are almost
equivalent for b = 0.1 and b = −0.1, for b = 0.3 and b = −0.3, and so on. Thus the SNR
is almost the same for b = 0.1 and b = −0.1, etc. In addition, one can see that for a positive
value of b, a large value of the bias means a high barrier height and a low SNR.

In figure 7, we show the influence of the additive noise intensity P on the SNR for
different values of the positive system bias b. We observed clearly the conventional stochastic
resonance in the mono-stable system. Moreover, the SNR decreases monotonically with the
increasing value of the positive system bias b. The position of the maximum moves to the
right with the increment of the parameter b. One can explain the result shown in figure 7 by
virtue of figure 8 using the same approach as in figures 1 and 3.

In conclusion, we have studied the stochastic resonance phenomenon in a biased mono-
stable system subject to multiplicative and additive noise. The output SNR shows non-
monotonic behaviour when it is plotted versus the intensity of the multiplicative and additive
noise, as well as the system parameters.
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